PostgresDatasource
class great_expectations.datasource.fluent.PostgresDatasource(*, type: Literal['postgres'] = 'postgres', name: str, id: Optional[uuid.UUID] = None, assets: List[Union[great_expectations.datasource.fluent.sql_datasource.TableAsset, great_expectations.datasource.fluent.sql_datasource.QueryAsset]] = [], connection_string: Union[great_expectations.datasource.fluent.config_str.ConfigStr, pydantic.v1.networks.PostgresDsn], create_temp_table: bool = False, kwargs: Dict[str, Union[great_expectations.datasource.fluent.config_str.ConfigStr, Any]] = )#
Adds a postgres datasource to the data context.
- Parameters
name – The name of this postgres datasource.
connection_string – The SQLAlchemy connection string used to connect to the postgres database. For example: “postgresql+psycopg2://postgres:@localhost/test_database”
assets – An optional dictionary whose keys are TableAsset or QueryAsset names and whose values are TableAsset or QueryAsset objects.
add_query_asset(name: str, query: str, batch_metadata: Optional[BatchMetadata] = None) QueryAsset #
Adds a query asset to this datasource.
- Parameters
name – The name of this table asset.
query – The SELECT query to selects the data to validate. It must begin with the “SELECT”.
batch_metadata – BatchMetadata we want to associate with this DataAsset and all batches derived from it.
- Returns
The query asset that is added to the datasource. The type of this object will match the necessary type for this datasource. eg, it could be a QueryAsset or a SqliteQueryAsset.
add_table_asset(name: str, table_name: str = '', schema_name: Optional[str] = None, batch_metadata: Optional[BatchMetadata] = None) TableAsset #
Adds a table asset to this datasource.
- Parameters
name – The name of this table asset.
table_name – The table where the data resides.
schema_name – The schema that holds the table.
batch_metadata – BatchMetadata we want to associate with this DataAsset and all batches derived from it.
- Returns
The table asset that is added to the datasource. The type of this object will match the necessary type for this datasource. eg, it could be a TableAsset or a SqliteTableAsset.
- delete_asset(name: str)None #
Removes the DataAsset referred to by asset_name from internal list of available DataAsset objects.
- Parameters
name – name of DataAsset to be deleted.
- get_asset(name: str)great_expectations.datasource.fluent.interfaces._DataAssetT #
Returns the DataAsset referred to by asset_name
- Parameters
name – name of DataAsset sought.
- Returns
_DataAssetT – if named “DataAsset” object exists; otherwise, exception is raised.