great_expectations.expectations.core.expect_column_values_to_be_in_set
¶
Module Contents¶
Classes¶
|
Expect each column value to be in a given set. |
-
class
great_expectations.expectations.core.expect_column_values_to_be_in_set.
ExpectColumnValuesToBeInSet
(configuration: Optional[ExpectationConfiguration] = None)¶ Bases:
great_expectations.expectations.expectation.ColumnMapExpectation
Expect each column value to be in a given set.
For example:
# my_df.my_col = [1,2,2,3,3,3] >>> my_df.expect_column_values_to_be_in_set( "my_col", [2,3] ) { "success": false "result": { "unexpected_count": 1 "unexpected_percent": 16.66666666666666666, "unexpected_percent_nonmissing": 16.66666666666666666, "partial_unexpected_list": [ 1 ], }, }
expect_column_values_to_be_in_set is a
column_map_expectation
.- Parameters
column (str) – The column name.
value_set (set-like) – A set of objects used for comparison.
- Keyword Arguments
mostly (None or a float between 0 and 1) – Return “success”: True if at least mostly fraction of values match the expectation. For more detail, see mostly.
parse_strings_as_datetimes (boolean or None) – If True values provided in value_set will be parsed as datetimes before making comparisons.
- Other Parameters
result_format (str or None) – Which output mode to use: BOOLEAN_ONLY, BASIC, COMPLETE, or SUMMARY. For more detail, see result_format.
include_config (boolean) – If True, then include the expectation config as part of the result object. For more detail, see include_config.
catch_exceptions (boolean or None) – If True, then catch exceptions and include them as part of the result object. For more detail, see catch_exceptions.
meta (dict or None) – A JSON-serializable dictionary (nesting allowed) that will be included in the output without modification. For more detail, see meta.
- Returns
An ExpectationSuiteValidationResult
Exact fields vary depending on the values passed to result_format and include_config, catch_exceptions, and meta.
See also
expect_column_values_to_not_be_in_set
-
library_metadata
¶
-
map_metric
= column_values.in_set¶
-
success_keys
= ['value_set', 'mostly', 'parse_strings_as_datetimes']¶
-
default_kwarg_values
¶
-
args_keys
= ['column', 'value_set']¶
-
classmethod
_atomic_prescriptive_template
(cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs)¶ Template function that contains the logic that is shared by atomic.prescriptive.summary (GE Cloud) and renderer.prescriptive (OSS GE)
-
classmethod
_prescriptive_renderer
(cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs)¶
-
classmethod
_descriptive_example_values_block_renderer
(cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs)¶
-
validate_configuration
(self, configuration: Optional[ExpectationConfiguration])¶