great_expectations.expectations.metrics.query_metrics
¶
Submodules¶
great_expectations.expectations.metrics.query_metrics.query_column
great_expectations.expectations.metrics.query_metrics.query_column_pair
great_expectations.expectations.metrics.query_metrics.query_multiple_columns
great_expectations.expectations.metrics.query_metrics.query_table
great_expectations.expectations.metrics.query_metrics.query_template_values
Package Contents¶
Classes¶
Base class for all Query Metrics. |
|
Base class for all Query Metrics. |
|
Base class for all Query Metrics. |
|
Base class for all Query Metrics. |
|
Base class for all Query Metrics. |
-
class
great_expectations.expectations.metrics.query_metrics.
QueryColumn
¶ Bases:
great_expectations.expectations.metrics.query_metric_provider.QueryMetricProvider
- Base class for all Query Metrics.
- Query Metric classes inheriting from QueryMetricProvider must have the following attributes set:
metric_name: the name to use. Metric Name must be globally unique in a great_expectations installation.
domain_keys: a tuple of the keys used to determine the domain of the metric
value_keys: a tuple of the keys used to determine the value of the metric.
In some cases, subclasses of MetricProvider, such as QueryMetricProvider, will already have correct values that may simply be inherited by Metric classes.
-
metric_name
= query.column¶
-
value_keys
= ['column', 'query']¶
-
_sqlalchemy
(cls, execution_engine: SqlAlchemyExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
_spark
(cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
class
great_expectations.expectations.metrics.query_metrics.
QueryColumnPair
¶ Bases:
great_expectations.expectations.metrics.query_metric_provider.QueryMetricProvider
- Base class for all Query Metrics.
- Query Metric classes inheriting from QueryMetricProvider must have the following attributes set:
metric_name: the name to use. Metric Name must be globally unique in a great_expectations installation.
domain_keys: a tuple of the keys used to determine the domain of the metric
value_keys: a tuple of the keys used to determine the value of the metric.
In some cases, subclasses of MetricProvider, such as QueryMetricProvider, will already have correct values that may simply be inherited by Metric classes.
-
metric_name
= query.column_pair¶
-
value_keys
= ['column_A', 'column_B', 'query']¶
-
_sqlalchemy
(cls, execution_engine: SqlAlchemyExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
_spark
(cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
class
great_expectations.expectations.metrics.query_metrics.
QueryMultipleColumns
¶ Bases:
great_expectations.expectations.metrics.query_metric_provider.QueryMetricProvider
- Base class for all Query Metrics.
- Query Metric classes inheriting from QueryMetricProvider must have the following attributes set:
metric_name: the name to use. Metric Name must be globally unique in a great_expectations installation.
domain_keys: a tuple of the keys used to determine the domain of the metric
value_keys: a tuple of the keys used to determine the value of the metric.
In some cases, subclasses of MetricProvider, such as QueryMetricProvider, will already have correct values that may simply be inherited by Metric classes.
-
metric_name
= query.multiple_columns¶
-
value_keys
= ['columns', 'query']¶
-
_sqlalchemy
(cls, execution_engine: SqlAlchemyExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
_spark
(cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
class
great_expectations.expectations.metrics.query_metrics.
QueryTable
¶ Bases:
great_expectations.expectations.metrics.query_metric_provider.QueryMetricProvider
- Base class for all Query Metrics.
- Query Metric classes inheriting from QueryMetricProvider must have the following attributes set:
metric_name: the name to use. Metric Name must be globally unique in a great_expectations installation.
domain_keys: a tuple of the keys used to determine the domain of the metric
value_keys: a tuple of the keys used to determine the value of the metric.
In some cases, subclasses of MetricProvider, such as QueryMetricProvider, will already have correct values that may simply be inherited by Metric classes.
-
metric_name
= query.table¶
-
value_keys
= ['query']¶
-
_sqlalchemy
(cls, execution_engine: SqlAlchemyExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
_spark
(cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
class
great_expectations.expectations.metrics.query_metrics.
QueryTemplateValues
¶ Bases:
great_expectations.expectations.metrics.query_metric_provider.QueryMetricProvider
- Base class for all Query Metrics.
- Query Metric classes inheriting from QueryMetricProvider must have the following attributes set:
metric_name: the name to use. Metric Name must be globally unique in a great_expectations installation.
domain_keys: a tuple of the keys used to determine the domain of the metric
value_keys: a tuple of the keys used to determine the value of the metric.
In some cases, subclasses of MetricProvider, such as QueryMetricProvider, will already have correct values that may simply be inherited by Metric classes.
-
metric_name
= query.template_values¶
-
value_keys
= ['template_dict', 'query']¶
-
_sqlalchemy
(cls, execution_engine: SqlAlchemyExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶
-
_spark
(cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: dict, metric_value_kwargs: dict, metrics: Dict[str, Any], runtime_configuration: dict)¶