great_expectations.experimental.datasources
¶
Submodules¶
great_expectations.experimental.datasources.config
great_expectations.experimental.datasources.experimental_base_model
great_expectations.experimental.datasources.interfaces
great_expectations.experimental.datasources.metadatasource
great_expectations.experimental.datasources.postgres_datasource
great_expectations.experimental.datasources.sources
great_expectations.experimental.datasources.type_lookup
Package Contents¶
Classes¶
|
Postgres datasource |
-
class
great_expectations.experimental.datasources.
PostgresDatasource
(**kwargs)¶ Bases:
great_expectations.experimental.datasources.interfaces.Datasource
Postgres datasource
- Parameters
name – The name of this datasource
connection_str – The SQLAlchemy connection string used to connect to the database. For example: “postgresql+psycopg2://postgres:@localhost/test_database”
assets – An optional dictionary whose keys are table asset names and whose values are TableAsset objects.
-
asset_types
:ClassVar[List[Type[DataAsset]]]¶
-
type
:Literal['postgres'] = postgres¶
-
connection_string
:str¶
-
assets
:Dict[str, TableAsset]¶
-
execution_engine_type
(self)¶ Returns the default execution engine type.
-
add_table_asset
(self, name: str, table_name: str, order_by: Optional[BatchSortersDefinition] = None)¶ Adds a table asset to this datasource.
- Parameters
name – The name of this table asset.
table_name – The table where the data resides.
order_by – A list of BatchSorters or BatchSorter strings.
- Returns
The TableAsset that is added to the datasource.
-
get_asset
(self, asset_name: str)¶ Returns the TableAsset referred to by name
-
get_batch_list_from_batch_request
(self, batch_request: BatchRequest)¶ A list of batches that match the BatchRequest.
- Parameters
batch_request – A batch request for this asset. Usually obtained by calling get_batch_request on the asset.
- Returns
A list of batches that match the options specified in the batch request.